Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1261038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941899

RESUMO

The ovarian follicle is a complex structure that protects and helps in the maturation of the oocyte, and then releases it through the controlled molecular and structural remodeling process of ovulation. The progesterone receptor (PGR) has been shown to be essential in regulating ovulation-related gene expression changes. In this study, we found disrupted expression of the cellular adhesion receptor gene Sema7A in the granulosa cells of PGR-/- mice during ovulation. We subsequently found that expression of Sema7A in preovulatory follicles is promoted by gonadotropins and hypoxia, establishing an asymmetrical pattern with the SEMA7A protein enriched at the apex of large antral follicles. Sema7A expression was downregulated through a PGR-dependent mechanism in the periovulatory period, the abundance of SEMA7A protein was reduced, and the asymmetric pattern became more homogeneous after an ovulatory stimulus. Receptors for Sema7A can either repel or promote intercellular adhesion. During ovulation, striking inverse regulation of repulsive Plxnc1 and adhesive Itga5/Itgb1 receptors likely contributes to dramatic tissue remodeling. The adhesive receptor Itga5 was significantly increased in periovulatory granulosa cells and cumulus-oocyte complexes (COCs), and functional assays showed that periovulatory granulosa cells and COCs acquire increased adhesive phenotypes, while Sema7A repels granulosa cell contact. These findings suggest that the regulation of Sema7A and its associated receptors, along with the modulation of integrin α5, may be critical in establishing the multilaminar ovarian follicle structure and facilitating the remodeling and apical release of the cumulus-oocyte complex during ovulation.

2.
Nucleic Acids Res ; 51(12): 5981-5996, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37099375

RESUMO

Progesterone receptor (PGR) plays diverse roles in reproductive tissues and thus coordinates mammalian fertility. In the ovary, rapid acute induction of PGR is the key determinant of ovulation through transcriptional control of a unique set of genes that culminates in follicle rupture. However, the molecular mechanisms for this specialized PGR function in ovulation is poorly understood. We have assembled a detailed genomic profile of PGR action through combined ATAC-seq, RNA-seq and ChIP-seq analysis in wildtype and isoform-specific PGR null mice. We demonstrate that stimulating ovulation rapidly reprograms chromatin accessibility in two-thirds of sites, correlating with altered gene expression. An ovary-specific PGR action involving interaction with RUNX transcription factors was observed with 70% of PGR-bound regions also bound by RUNX1. These transcriptional complexes direct PGR binding to proximal promoter regions. Additionally, direct PGR binding to the canonical NR3C motif enable chromatin accessibility. Together these PGR actions mediate induction of essential ovulatory genes. Our findings highlight a novel PGR transcriptional mechanism specific to ovulation, providing new targets for infertility treatments or new contraceptives that block ovulation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Regulação da Expressão Gênica , Receptores de Progesterona , Transcrição Gênica , Animais , Feminino , Camundongos , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Mamíferos/genética , Camundongos Knockout , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo
3.
Cells ; 11(9)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563869

RESUMO

Progesterone receptor (PGR) activity is obligatory for mammalian ovulation; however, there is no established direct functional pathway explaining how progesterone receptor completely and specifically regulates oocyte release. This study examined the overarching cell- and isoform-specific effects of the PGR within each cellular compartment of the ovary, using mice null for the PGR (PRKO), as well as isoform-specific null mice. The PGR was expressed in ovarian granulosa and stromal cells and although PRKO ovaries showed no visible histological changes in preovulatory ovarian morphology, follicle rupture did not occur. Reciprocal ovarian transplant experiments established the necessity of ovarian PGR expression for ovulation. Cumulus-oocyte complexes of PRKO mice exhibited normal morphology but showed some altered gene expression. The examination of mitochondrial activity showed subtle differences in PRKO oocytes but no differences in granulosa cell respiration, glycolysis or ß-oxidation. Concurrently, RNA-seq identified novel functional pathways through which the PGR may regulate ovulation. PGR-A was the predominant transcriptionally active isoform in granulosa cells and 154 key PGR-dependent genes were identified, including a secondary network of transcription factors. In addition, the PGR regulated unique gene networks in the ovarian stroma. Collectively, we establish the effector pathways activated by the PGR across the ovarian cell types and conclude that PGR coordinates gene expression in the cumulus, granulosa and stromal cells at ovulation. Identifying these networks linking the PGR to ovulation provides novel targets for fertility therapeutics and nonhormonal contraceptive development.


Assuntos
Ovulação , Receptores de Progesterona , Animais , Feminino , Células da Granulosa/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Progesterona/farmacologia , Isoformas de Proteínas/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
4.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33682422

RESUMO

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Assuntos
Coração/fisiopatologia , Receptores de Progesterona/metabolismo , Feminino , Humanos , Masculino , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...